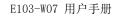


E103-W07 用户手册

WIFI MESH

成都亿佰特电子科技有限公司


目录

第一章	功能概述	5
1.1	简介	5
1.2	特点功能	5
第二章	电气特性	5
2. 1	绝对最大额定值	5
2.2	建议工作条件	6
2.3	射频特性	6
第三章	硬件描述	6
3. 1	机械尺寸与引脚定义	6
3. 2	最小原理图	8
3. 3	模组尺寸	9
3. 4	PCB 封装图形	10
第四章	功能详解	11
4. 1	术语	11
4.2	树型拓扑	11
4.3	节点类型选择	12
4.4	mesh 组网	12
	4.4.1 自动组网	12
	4.4.2 手动组网	12
4.5	有路由器、无路由器组网	12
4.6	MESH 数据流	13
4.7	MQTT	13
	4.7.1 质量服务等级 QoS	13
	4.7.2 Clean Session	13
第五章	AT 指令	14
5. 1	约束条件	14
5. 2	错误代码	14
5. 3	状态返回	15
5.4	基础指令	16
	5.4.1 AT 测试	16
	5.4.2 AT+RESET 重启	
	5.4.3 AT+RESTORE 恢复出厂设置	16
	5.4.4 AT+BAUD 串口波特率	17
	5.4.5 AT+UART UART 设置	17
5. 5	MESH 网络	17
	5.5.1 AT+ROUTER 路由器参数	17
	5.5.2 AT+MESHID mesh ID设置或查询	18
	5.5.3 AT+MEAP mesh 网络 ap 信息	19
	5.5.4 AT+MECHANNEL MESH 网络信道	19
	5.5.5 AT+MECAPACITY MESH 网络的容量	20
	5.5.6 AT+METYPE 节点在网的中的类型	20

5.5.7 AT+MESTART 启开 mesh		.20
5.5.8 AT+MESEND 发送 MESH 数据		21
5.5.9 AT+MESTATUS 当前 mesh 网络状态	态	21
5.5.10 +MEDAT 上报 Mesh 网络数据		22
5.5.11 AT+MEAUTO 上电自动组网		22
5.6 TCP/IP 通信		23
5.6.1 AT+CIFSR 查询 ROOT 节点 IP地	址	23
5.6.2 AT+CIPSTART 建立 TCP 连接, U	IDP 传输	.23
5.6.3 AT+CIPCLOSE 关闭 TCP 、UDP 通	1信	24
5.6.4 AT+CIPSERVER 新建、关闭 TCP	服务	.24
5.6.5 AT+CIPSEND 发送 TCP UDP 数据	로	25
5.6.6 AT+CIPDINFO TCP 输出数据配置		25
5.6.7 +IPD 接收 TCP UDP 数据		25
5.7 MQTT 通信		26
5.7.1 AT+MQTTUSERCFG MQTT 用户配置	信息	.26
5.7.2 AT+MQTTCONNCFG MQTT 连接配置]信息	26
5.7.3 AT+MQTTCONN 连接 MQTT Broke	rs	27
5.7.4 AT+MQTTPUB 发布 MQTT消息		27
5.7.5 AT+MQTTSUB 订阅主题		.28
5.7.6 AT+MQTTUNSUB 取消订阅主题		28
5.7.7 AT+MQTTCLEAN 关闭 MQTT 连接		28
5.7.8 +MQTTSUBRECV MQTT 接收数据		29
第六章 快速使用指南		30
6.1 模块上电		30
6.2 模块准备完成		30
6.3 MESH 组网		30
6.3.1 有路由,手动组网		30
6.3.2 收发数据		31
6.4 Socket 通信		.32
6.4.1 TCP Client		32
6.4.2 TCP Server		33
6.4.3 Socket 通信		.33
6.5 Mqtt 通信		34
6.5.1 配置,连接		34
6.5.2 订阅主题		34
6.5.3 发布消息		34
第七章 常见问题		35
7.1 传输距离不理想		35
7.2 模块易损坏		35
7.3 误码率太高		35
第八章 焊接作业指导		36
8.1 回流焊温度		36
8.2 回流焊曲线图		36
第九章 免责声明		37

修订历史	37
关于我们	37

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。 文档"按现状"提供,不 负任何担保责任,包括对适销性、适用于特定用途或非侵 权性的任何担保,和任何提案、规格或样品 在他处提到的任何担保。本文档不负任何责 任,包括使用本文档内信息产生的侵犯任何专利权行为的 责任。本文档在此未以禁止反 言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许 可。

文中所得测试数据均为亿佰特实验室测试所得,实际结果可能略有差异。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

最终解释权归成都亿佰特电子科技有限公司所有。

注 意

由于产品版本升级或其他原因,本手册内容有可能变更。亿佰特电子科技有限公司保留在没有任何通知或 者提示的情况下对本手册的内容进行修改的权利。本手册仅作为使用指导,成都亿佰特电子科技有限公司 尽全力在本手册中提供准确的信息,但是成都亿佰特电子科技有限公司并不确保手册内容完全没有错误, 本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。

第一章 功能概述

1.1 简介

E103-W07 基于 ESP32-S2 芯片方案的 WIFI MESH 的模组。

E103-W07 是一套建立在 Wi-Fi 协议之上的网络协议。ESP-MESH 允许分布在大 范围区域内(室内和室外)的大量设备(下文称节点)在同一个 WLAN(无线局域网) 中相互连接。E103-W07 具有自组网和自修复的特性, 也就是说 mesh 网络可以自主 地构建和维护。

1.2 特点功能

- 支持 AT 指令;
- 支持串口通信,流控。波特率最高支持128000;
- 支持 WIFI MESH;
- 多达 1000 个 MESH 节点;
- 支持自定义 MESH 角色;
- 支持自动和手动组网;
- 支持有路由组网和无路由组网;
- 支持配置 MESH 网络容量
- 支持1路TCP Server,最大8路连接;
- 支持 TCP Client, UDP 通信,多达 8 个 Socket, 且可共存;
- 支持 TCP Server, TCP Client, UDP 共存;
- 支持 MQTT V3.1.1;

第二章 电气特性

2.1 绝对最大额定值

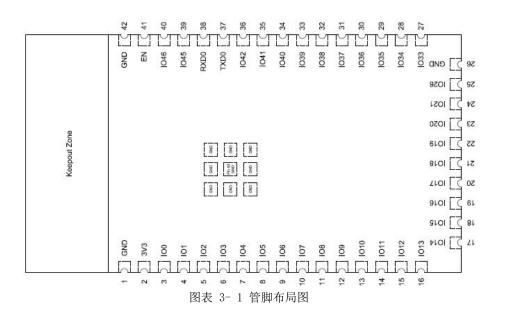
符号	参数	最小值	最大值	单位
VDD33	电源管脚电压	- 0. 3	3. 6	V
T <i>STORE</i>	存储温度	- 40	85	° C

图表 2-1 绝对最大额定值

2.2 建议工作条件

符号	参数	最小值	典型值	最大值	单位
VDD33	电源管脚电压	3.0	3.3	3.6	V
IVDD	外部电源的供电电流	0.5			A
Т	建议工作温度	- 40	_	85	° C
Humidity	湿度		85		%RH
Imax	峰值电流			400	mA
I	平均电流			100	mA

图表 2-2 建议工作条件


2.3 射频特性

工作信道中心频率范围		2412~2484MHz
	Wi-Fi	协议 IEEE802.11b/g/n
	天线类型	PCB, IPEX 天线
ा⊏ च्ले	与路由器@水星 MW305R	200m
距离	模块之间	100m

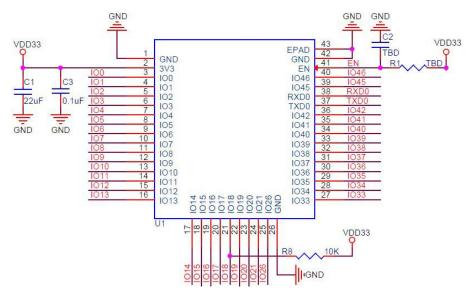
图表 2-3 射频特性

第三章 硬件描述

3.1 机械尺寸与引脚定义

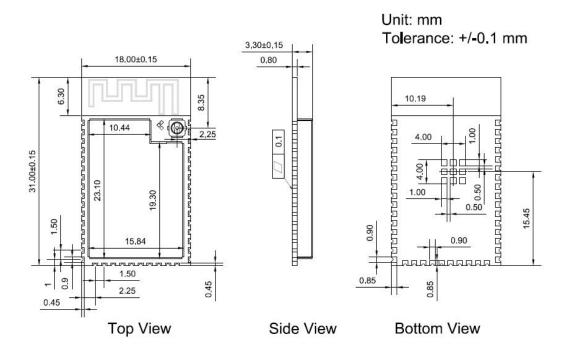
名称 序号 类型 功能

GND	1	P	接地
3V3	2	Р	供电
100	3	I/0/T	RTC_GPI00, GPI00
I01	4	I/0/T	Restore, 引脚内部上拉。用于恢复出厂设置。引脚到地 10ms, 而后到 VCC 10ms, 重置参数。
102	5	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
103	6	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
104	7	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
105	8	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
106	9	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
107	10	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
108	11	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
109	12	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
I010	13	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
I011	14	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1012	15	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1013	16	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
I014	17	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1015	18	I/0/T	UORTS
I016	19	I/0/T	UOCTS
I017	20	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
I018	21	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1019	22	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1020	23	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1021	24	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1026	25	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
GND	26	P	接地
1033	27	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
I034	28	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1035	29	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1036	30	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1037	31	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1038	32	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1039	33	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1040	34	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
I041	35	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1042	36	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
TXD0	37	I/0/T	UOTXD
RXD0	38	I/0/T	UORXD
1045	39	I/0/T	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》
1046	40	I	未使用。引脚定义参见《ESP32-S2-WROOM 技术规格书.pdf》


7

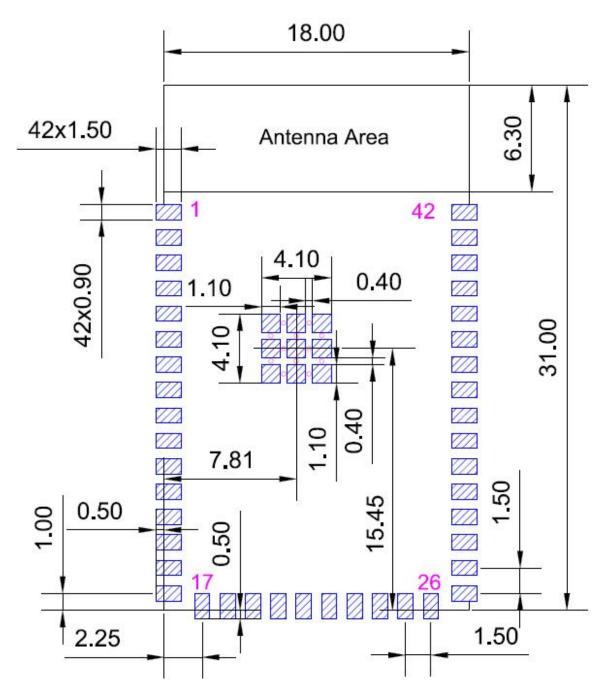
EN	41	I	高电平: 芯片使能;
			低电平: 芯片关闭;
			注意不能让 EN 管脚浮空。
GND	42	Р	接地

图表 3-2 管脚定义列表


3.2 最小原理图

图表 3-3 最小原理图

3.3 模组尺寸


图表 3-4 模组尺寸

3.4 PCB 封装图形

Unit: mm

Via for thermal pad

Copper

图表 3-5 PCB 封装

第四章 功能详解

4.1 术语

节点 (Node)

任何属于或可以成为 ESP-MESH 网络一部分的设备。

根节点 (ROOT Node)

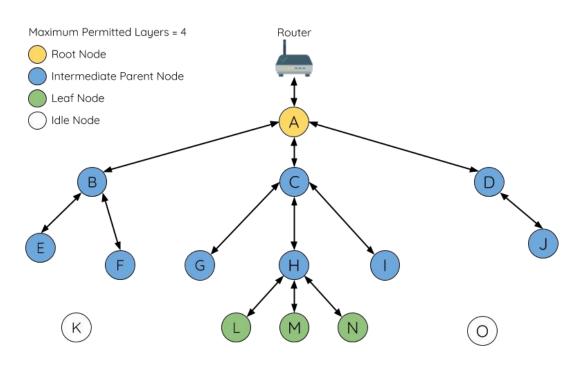
网络顶部的节点。Mesh 网络有且只有一个根节点。

子节点 (Child Node)

如节点 X 连接至节点 Y,且 X 相较 Y 与根节点的距离更远 (跨越的连接数量更多),则称 X 为 Y 的子节点。

节点地址

MESH 网络是通过 MAC 地址+IP 地址端口的方式。任何一个节点拥有两个 MAC 地址: AP、STA。MESH 网络地址为 AP MAC 地址,获取父节点的 MAC 地址则是 AP 的 MAC 地址。子节点地址为 STA MAC 地址。


Mesh 路由表保存的是 STA 的 MAC 地址;

只有根节点才拥有 IP 地址,其他节点无 IP 地址。

MESH ID

MESH ID 是 Mesh 网络的标识。

4.2 树型拓扑

图表 4-1 MESH 网络拓扑图

4.3 节点类型选择

E103-W07 支持三种节点类型:未入网节点,根节点,普通节点,叶节点。

若模块使用默认节点类型(未入网节点)MESH 网络启动后,模块自动枚举生成根节点。若指定模块为根节点,模块则放弃自动枚举。

模块自动枚举根节点,是根据所有节点的获取到的路由器信号最强则为根节点。

MESH 网络中, 仅根节点能够进么 socket 通主。其他节点与外网通信, 可使用根节点进行数据的转发。

叶节点仅在自动组网时产生。手动指定节点类型不支持指定为叶节点。

4.4 mesh 组网

模块支持两种组网方式: 手动组网和自动组网。

4.4.1 自动组网

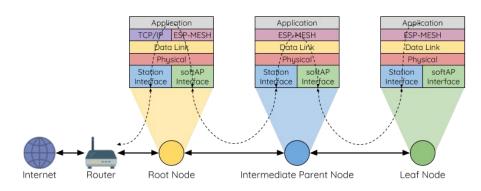
自动组网,无需用户干涉,模块上电后自动枚举 ROOT 节点,自动选择父(根)节点。用户仅需要在组网完成后进行通信即可。自动组网可以避免网络层过深,路由过于复杂。

自动组网时,节点类型仅能配置为空闲节点。

4.4.2 手动组网

手动组网,用户可以指定模块为ROOT 节点和普通节点。

注意: MESH 网络正式构建前,必须确保网络中所有节点具有相同的配置。每个节点必须配置相同的 MESH ID,路由器配置,softAP 配置。


4.5 有路由器、无路由器组网

所谓有无路由器组网是指根据节点是否连接路由器。

模块支持该两种组网方式。无路由组网无需指定路由器 ssid, password。但必须指定信道。有路由器组网,信道可不指定,若指定的信道与路由路信道不相同,或未指定信道,那么根节点需要全信道扫描,以致连接路由器的时间更长;若指定正确的信道,加入路由器的时间将很快。

4.6 MESH 数据流

图表 4-2 MESH 数据流

MESH 网格中,只有根节点有 TCP/IP 协议栈,也就是说只有根据节点能够连接互联网,进行通信。仅根节点支持 TCP、UDP、MQTT。

在使用中,普通节点可以将数据发送到根节点,由根节点转发数据到互联网。

4.7 MQTT

更多 MQTT 知识请参考中文网站: http://mqtt.p2hp.com/。

4.7.1 质量服务等级 QoS

- ▶ QoS 0: 最多分发一次。消息分发以来底层网络的性能。接收者只能收到一次消息,或者一次也收不到。
- ▶ QoS 1:最少分发一次。这种情况的质量服务确保消息至少一次抵达接收者。
- > QoS 2 精确一次分发。这是最高的服务质量,用在丢失和重复消息都不能被接受的情况。这种服务质量会增加开销

4.7.2 Clean Session

客户端和服务端可以存储会话状态,以便能够在一系列的网络连接中可靠的传递消息。这个用来控制会话状态的生命周期。

如果 CleanSession 被设置为 0,服务器必须根据当前的会话状态恢复与客户端的通信(客户端的唯一标识作为会话的标识)。如果没有与客户端唯一标识相关的绘画,服务端必须创建一个新的会话。客户端和服务端在断开连接后必须存储会话 [MQTT-3. 1. 2-4]。当 CleanSession 为 0 的会话断开后,服务器还必须将所有和客户端订阅相关的 QoS1 和 QoS2 的消息作为会话状态的一部分存储起来 [MQTT-3. 1. 2-5]。也可以选择把 QoS0 的消息也存储起来。

如果 CleanSession 被设置为 1,客户端和服务端必须断开之前的会话启动一个新的会话。只要网络连接存在会话就存在。一个会话的状态数据一定不能被随后的会话复用 [MQTT-3. 1. 2-6]。

第五章 AT 指令

5.1 约束条件

- 1. AT 指令为字符内容;
- AT 指令以" \r \n"结束(下文讲述 AT 指令不再叙述 \r \n)。
- 3. AT 指令不区别大小写,但参数是区别大小写。
- AT 指令执行错误返回格式: +ERROR: <CODE>\r\n
- 5. [params]为必填参数, <params>为非必须参数。
- 6. 所有字符型参数,必须使用"";

5.2 错误代码

CODE	说明	可能原因	解决方式
0	指令不存在		确认是否支持该指令
1	参数长度错误		检查参数长度
2	参数数量错误		检查参数数量
3	参数错误		检查参数内容
4	空指针		
5	资源有限		
6	队列为空		
7	未完成初始化		
8	未配置参数		
9	地址错误		
100	不支持该操作		
101	AT 地址不存在		
102	AT 指令格式错误		
300	Mesh 未初始化		
301	Mesh 启动错误	参数设置有误	
302	Mesh 己经连接成功		
303	Mesh 未连接		
304	节点类型配置错误		
305	Mesh 未连接	该指令主要在 TCP UDP	
000	WOOT VEYETA	MQTT 返回	
400	Flash 操作错误		
401	出厂默认参数被损坏		
402	Flash 己满		
403	未发现该条记录		

404			
405	Flash 更新错误		
405	不支持保存该条记录		
600	创建 socket 失败		
601	连接失败		
602	绑定本地端口失败		
603	监听本地端口失败		
604	Tcp server 己存在	只支持创建一个 tcp server	
605	Link id 己使用		
606	接受远端连接时出错		
607	连接不存在		
608	重连超过5次		
700	Mqtt 连接错误	参数问题	
701	当前 mqtt 己断开连接		

5.3 状态返回

节点连接到父节点			
指令	+ME: "PARENT CONNECT", ["mac"]		
参数	Mac:	父节点 MAC 地址	
说明	无路由 ROOT 节点不会输出该状态;		
	断开る	○ 节点连接	
指令	+ME:"PARENT DISCONNECT", ["mac"]		
参数	Mac	父节点 MAC 地址	
说明	无		
	有子	节点连接	
指令	+ME:"CHILD CONNECT", ["mac"]		
参数	Mac	子节点 MAC 地址	
说明	无		
	子节点	京断开连接	
指令	+ME:"CHILD DISCONNECT", ["mac"]		
参数	Mac	子节点 MAC 地址	
说明	无		
	成功	扶取到 IP	
指令	+ME:"IP", ["IP"]		
参数	IP	路由器分配的 IP 地址	
说明	1. 仅 ROOT 节点返回;		
	2. 表示 Root 节点成功连接到由路器,在此之	上后可以进行 tcp, udp, mqtt 通信。	
	有新的 TCP 客戶	『端连接到本地服务	
指令	+IP:"CONNECT", [linkid], ["IP"], [port]		
参数	LinkID	连接 id. 用于标数 socket 链路	

	IP	远端 IP。"192. 168. 0. 2"	
	port	远端端口	
说明	本地创建 TCP server ,远端 tcp clinet 连接时	输出:	
	TCP 3	主接断开	
指令	+IP: "DISCONNECT", [linkId]		
参数	LinkID	连接 ID	
说明	1. 远端 TCP 客户端和本地客户端断开时输出		
	Mqtt 连	妾到 Broker	
指令	+MQTT:CONNECT		
参数	无		
说明	无		
	Mqtt 断开连接		
指令	+MQTT:DISCONNECT		
参数	无		
说明	无		

5.4 基础指令

5.4.1 AT 测试

指令	应答
AT	+OK
说明: 无	

5.4.2 AT+RESET 重启

指令	应答
AT+RESET	+OK
说明: 立即生效	

5.4.3 AT+RESTORE 恢复出厂设置

指令	应答	
AT+RESTORE	+OK	
说明:		
重置完后,自动重启;		
恢复出厂设置过程中,禁止任何形式复位,禁止操作未完成之前断电;		

5.4.4 AT+BAUD 串口波特率

指令		应答
查询	AT+BAUD?	+ BAUD :[para]
设置	AT+BAUD=[para]	+OK: 成功 +ERR:[NUM]: 错误
参数	最大支持 12800bps	
说明	说明 重启生效	
示例	示例 AT+BAUD=115200. 设置波特率为 115200	

5.4.5 AT+UART UART 设置

指令		指令	应答
査询	AT+UART?		+UART: [baud],[databits],[parity],[stopbits],[hw]
设置	AT+UART=[baud], [databits], [parity], [stopbits], [hw]		+OK: 成功 +ERR:[NUM]: 错误
		参数	描述
	baud	1200~5M(默认 115200)	UART 波特率
		0	5 bits
		1	6 bits
	databits	2	7 bits
		3(默认)	8 bits
参数	parity	0(默认)	无校验
		2	偶校验
		3	奇校验
	stopbits	1(默认)	停止位为 lbit
		2	停止位为 1.5bits
		3	停止位为 2bits
	HW	0(默认)	不支持
		3	硬件流控
说明	重启生效		
示例	AT+UART=115200, 3, 0, 1, 0		

5.5 MESH 网络

5.5.1 AT+ROUTER 路由器参数

指令	应答
1H 4	

査	AT+ROUTER?		+ROUTER	
询			["ssid"], ["password"], [router	rswitchdisable],["bssi
n.	AM. DOLIMDD [" • 1//] [" 1//	1 /	d"]	-PL
设	AT+ROUTER=["ssid"], ["password"]		+0K	成功
置	e>, <"bssid"	<u>></u>	+ERR: [NUM]	错误
	ssid		WIFI 名称。字符串最大	
	password		WIFI 密码。字符串长月	度为 8 [~] 63 字节
参		0	使能切换	į.
数	routerswitchdisable	1 (默认)	禁止切挨	į
		-		
	bssid		路由器 MAC 地址。固知	定为6个字节
	1. 重启生效,掉电保存;			
	2. 默认值全为空,或者 0			
	3. 如果路由器 SSID 为隐藏,则	BSSID 必须指定;		
说	4. 在实际应用场景中,存在多个	相同 SSID 的路由器/AP, 山	比时必须指定 BSSID, 否则会出现多	个 MESH 网络,导致节点不
明	4. 在实际应用场景中,存在多个相同 SSID 的路由器/AP,此时必须指定 BSSID,否则会出现多个 MESH 网络,导致节点不能相互通信。			
	5. 如果指定了BSSID,但是没有	没置 routerswitchdisabl	e, 当这个指定 BSSID 的路由器在数	女次后仍然找不到的时候,
	整个网络允许切换到另一个具	有相同 SSID 的路由器。	新路由器也可能在不同的通道上。	如果新的交换路由器和以
	前的路由器的密码不同,网状网络可能会建立,但根节点永远不会连接到新的交换路由器,这是一个风险			
示	获取当前路由器设置:			
例				
	模块响应:			
	+ROUTER: "test", "1357924680", 0, "00:00:00:00:00"			
	设置路由器名称为: test01, 密码为: 12345678, 无指定路由器 MAC 地址:			

AT+ROUTER="test02", "12345678", 0, "01:02:03:04:05:06"

AT+ROUTER="test01", "12345678"

设置路由器名称: test03, 无密码, 无指定 MAC

AT+ROUTER="test02"

5.5.2 AT+MESHID mesh ID 设置或查询

指令		应答
查询	AT+MEID?	+MEID:["mesh id"]
设置	AT+ MEID = ["mesh id"]	+OK 成功
以且	文.直. AI+ MCID — [mesn id]	+ERR:[NUM] 错误
参数	mesh id	Mesh 网络的标识。由 6 个字节组成。
少奴	mesn 1d	XX:XX:XX:XX:XX
	1. 重启生效,掉电保存	
说明	2. 默认值:"00:00:00:00:01"	
3. MESH ID 为 MESH 网络标识,不同 MESH ID 的模块不能够加入同一个网络中。		块不能够加入同一个网络中。

设置路由器名称为: test02,密码为: 12345678, 且指定路由器 MAC 为: 01:02:03:04:05:06;

获取 mesh ID: AT+MEID? 示例 模块响应: +MEID: "00:00:00:00:00:01" AT+MEID="00:00:00:00:00:22"

5.5.3 AT+MEAP mesh 网络 ap 信息

指令		应答	
查询	AT+MEAP?	+MEAP:["password"]	
设置	AT+ MEAP = ["password"]	+OK 成功 +ERR:[NUM] 错误	
参数	Password	Password 为字符串,其长度范围: 8~63 字节,	
说明	 重启生效,掉电保存 默认: 12345678; 同一网络,密码必须相同,否则不能加入; 		
示例	获取 mesh ap 信息: AT+MEAP? 模块响应: +MEAP:"12345678" AT+MEAP="11111111"		

5.5.4 AT+MECHANNEL MESH 网络信道

	指令		应答	
查询	AT+MECHANNEL?		+ MECHANNEL:=[channel],	[channel switch]
设置	AT+MECHANNEL=[channel],[channel switch]		+OK	成功
以且 .			+ERR:[NUM]	错误
	cha	annel	MESH 网络信道。取值范围	月1 [~] 14. 默认为 1
参数	channal awitch	0 (默认)	使能信道切]换
	channel switch	1	禁止信道切]换
	1. 重启生效,掉电保存;			
说明	2. 在有路由器的 mesh 网络中,信道取决于路由器 AP 的信道;在无路由器的 mesh 网络中,信道必须设置。			
PE 193	3. 在有路由器的 MESH 网格中,在不清楚路由器 AP 的信道时 channel switch 应设置为 0,否则因在该信道无指定			
	的 AP, 模块无法加入 Mesh 网络,			
	获取 mesh 信道:			
	AT+MECHANNEL?			
示例	模块响应:			
+ MECHANNEL:1,0				
	AT+MECHANNEL=7, 1			

5.5.5 AT+MECAPACITY MESH 网络的容量

	指令		应答
AT+MECAPACITY?			+MECAPACITY:
查询			[ApConnectNum], [LayersMax], [CapacityNum]
设置	AT+MECAPACITY=[ApConnectNum], [LayersMax], [Capacity		+OK 成功
以且	Num]		+ERR:[NUM] 错误
	ApConnectNum	能够连接子节点	点最大数量。取值范围: <= 10, 默认: 6
参数	LayersMax	Mesh 网络层数。取值范围: 2~25。默认: 6	
	CapacityNum	Mesh 网络中节点最大数量。取值范围: <= 1000,默认: 300	
	1. 重启生效,掉电保存;		
说明	2. MESH 网络依据 ApConnectNum, LayersMax 取值决定网络容量。MESH 网络为树型网络。如果层数为 3,		各容量。MESH 网络为树型网络。如果层数为 3, 子节点数
量为 3, 理论网络容量: 3 ⁰ + 3 ¹ + 3 ² = 13, 如果此时 CapacityNum 设		时 CapacityNum 设置的值<13,那么最络网络容量依据	
	CapacityNum 决定;如果此时 CapacityNum>13,那么网络容量依据计算结果 13 决定。		络容量依据计算结果 13 决定。
示例	AT+MECAPACITY=2, 3, 50	设置结果为2,3	3, 50

5.5.6 AT+METYPE 节点在网的中的类型

指令		应答	
查询	查询 AT+METYPE? +METYPE:[type]		
设置	AT+METYPE=[type]	+OK 成功 +ERR:[NUM] 错误	
	type	描述	
	0(默认)	MESH_IDLE (未加入网络)	
参数	1	MESH_ROOT (根节点)	
	2	MESH_NODE (节点)	
	3	LEAF_NODE(叶节点)	
1. 重启生效,掉电保存;			
说明	2. 当前只支持 MESH_IDLE、MESH_ROOT 和 MESH_N	ODE 设备类型。无路由器的解决方案只支持 MESH_ROOT 和	
PC-93	MESH_NODE 两种类型。		
	3. 叶节点不能设置。叶节点只可能在获取 mesh 状态时,可能返回该类型		
示例	AT+METYPE=1		

5.5.7 AT+MESTART 启开 mesh

指令		应答	
启动	AT+MESTART	+OK 成功	
旧列	AITMESIANI	+ERR:[NUM] 错误	
参数		无	
2H BB	1. 立即生效;		
说明	2. 模块上电后不会自动加入或创建 MESH 网络,	需要使用该指令启动 MESH 网络。使用该网络时,请注意 MESH	

	网络的参数。错误的参数,模块并不会启动 MESH 网络。
	3. 该指令发出后,模块需要初始化 MESH 完成后才会响应 OK。
示例	AT+MESTART

5.5.8 AT+MESEND 发送 MESH 数据

指令		应答			
设置	AT+MESEND="[mac]",[len]	+OK 成功			
火 且	Minusolab [mac], [ien]	+ERR:[NUM] 错误			
参数	mac	目标节点的 MAC 地址			
少知	len	要发送数据的长度			
	1. 即时生效;				
	2. 该指令仅在用于节点与节点之前通信,如果 mad	c地址为空则是将数据发送到根节点。			
说明	3. 模块仅在接到指定长度的数据后,才返回到 AT	指令模式;			
	4. Len 最大长度 1440 字节;				
	5. E103-W07 会自动截断,例如 1en=2,发送数据为: 123, 收信息方会收到 12。				
	1. 发送字符串(hello mesh):				
	AT+MESEND="00:00:00:00:01", 11				
	>				
	Hello mesh.				
<i>=:t</i> nl	+OK:11				
示例	1. 发送字符串到根节点				
	AT+MESEND="", 11				
	>				
	Hello mesh.				
	+0K:11				

5.5.9 AT+MESTATUS 当前 mesh 网络状态

指令		应答	
查询	+ MESTATUS: [type], [connected], [layer], [node num], [parent addr], [layer], addr], local ap addr], [child num] [child1 addr] [child2 addr]…		
	Туре	节点类型,参考"AT+METYPE 节点在网的中的类型"定义。	
	Connected	0, 未连接; 1 己连接	
	Layer	当前层。参考"3.4.5AT+MECAPACITY MESH 网络的容量"中定义	
参数	Node num	当前网络节点总数量,包含 ROOT 节点	
多奴	parent_addr	父节点地址	
	local_sta addr	本地 station 地址	
	local_ap addr	本地 ap 地址	
	Child num	子节点数量	

	Child addr	子节点地址		
说明	1. 很多时候,节点的子	2节点并不只有一个,指令返回子节点地址时,全部返回。通过节点,父节点,子节点,可		
近明	以直接体现网络的实际拓扑图。			
	+MESTATUS=1, 1, 10, "01:01:01:01:01:01:01:00:00:00:00:00:00:0			
示例	"00:00:00:00:04"			
	"00:00:00:00:00:05"			

5.5.10 +MEDAT 上报 Mesh 网络数据

接收数据	+MEDAT:<"src addr">,[1en]				
会数	Src addr	数据来源地址			
参数	Len	Data 数据长度			
	1. AT+CIPDINFO= 1,输出的数据包含 Src add	dr; AT+CIPDINFO=0,输出的数据包不包含 Src ADDR;			
说明	2. 模块收到 MESH 数据后主动上报。				
נקי שט	3. 模块接收到数据后,输出该指令,随后输出数据。				
	4. 若输出数据长度大于 1440 字节,将分包输出。				
	1. 当 AT+CIPDINFO=1 输出数据包:				
	+MEDAT:"11:11:11:11:11", 10				
	hellw mesh.				
	2. 当 AT+CIPDINFO=O 输出数据				
	+MEDAT: 10				
示例	hellw mesh.				
	3. 当 AT+CIPDINFO=0 输出数据大于 1540 字=	节:			
	+MEDAT:"11:11:11:11:11", 1440				
	······<有效负荷>······				
	+MEDAT:"11:11:11:11:11", 100				
	······〈有效负荷〉······				

5.5.11 AT+MEAUTO 上电自动组网

指令		应答		
查询	AT+MEAUTO?		+MEAUTO:[auto]	成功
旦메			+ERR:[NUM]	错误
设置	AT+MEAUTO=[auto]		+OK	成功
以且			+ERR:[NUM]	错误
参数	Auto	0 (默认)	上电后,禁止自动启动	カMESH 组网
少蚁	Auto	1	上电后, 使能自动启动	力 MESH 组网
说明	1. 即时生效, 掉电保存;			
远明	2. 如果参数错误,模块将停止组网,同时不会输出任何错误信息;			
示例	AT+MEAUTO=1			

5.6 TCP/IP 通信

5.6.1 AT+CIFSR 查询 ROOT 节点 IP 地址

指令		应答	
查询	AT+CIFSR?	+CIFSR:[IP] 成功	
		+ERR: [NUM] 错误 Root 节点 IP 地址	
参数	IP 地址	格式为 "xxx. xxx. xxx"	
说明	1. 即时生效; 2. 该指令仅 Root 节点有效; 3. 该指令仅在启动 mesh 网络后,成功连接路由器	才能正常返回;	
示例	AT+CIFSR? +CIFSR: "192. 168. 0. 239"		

5.6.2 AT+CIPSTART 建立 TCP 连接, UDP 传输

5.6.2.1 TCP 通信

	指令	应答		
查询	AT+CIPSTART=[link ID], "[type]", [remote	+OK 成功		
1111	IP],[remote port][, TCP keep alive]	+ERR: [NUM] 错误		
	Link ID	连接 ID. 取值范值 0~7		
	T	TCP 客户端		
<i>↔₩</i>	Туре	"UDP 通信		
参数	remote IP	服务器 IP 地址		
	remote port	服务端端口。最大 65535		
	TCP keep alive	TCP 心跳。取值范围: 0 ~ 2700。		
	1. 即时生效;			
	2. TCP keep alive 为 0 时关闭 TCP 心跳,不过	及置该值时默认为 5S;		
说明	3. LinkID 需要手动指定。如果当前 LinkId 己	被使用,则返回错误。		
96.93	4. 本地 TCP 客户端断开连接后,自动重连。连接 5 次后仍不能连接,模块返回 "disconnect"。每次重连时间间			
	隔约 500ms。5 次重连失败,通常可能因为服务器关闭,网络链接(硬件连接)断开。			
	5. 服务端或链接问题			
= <i>t</i> al	AT+CIPSTART=0, "TCP", "192. 168. 0. 205", 6001, 30	00;		
示例	AT+CIPSTART=0, "TCP", "192. 168. 0. 205", 6001;			

RFC 并没有强制规定 TCP 一定需要保持多久连接。但是,一般 TCP 会保持链路在 3-5 分钟之类不会被断开。有时候,路 由器会对长时间没有数据经过的 TCP 链路进行清理,这时候通道就断开了。所以,对于 TCP 来说,一般 3 分钟左右发送一个 极小的数据包至服务器。所以关闭心跳包,可能会导致异常断。通常关闭协议层的心跳,应用层需要自己维护一个心跳包。

5.6.2.2 UDP 通信

指令		应答		
查询	AT+CIPSTART=[link ID], ["type"], [remote	+OK	成功	
耳叫	IP], [remote port], [UDP local port], [UDP mode]	+ERR:[NUM]	错误	
	Link ID	连接 ID. 取值范值 0~7		
	Т	"TCP"	TCP 客户端	
	Type	"UDP"	UDP 通信	
	remote IP	服务器 IP 均	也址	
参数	remote port	服务端端口	服务端端口。最大 65535	
	UDP local port	本地监听端口。		
	UDP mode	0	远端地址固定	
		1	当 UDP 接收到网络数据后,将远程 IP 和 PORT	
			修改为当前数据包的地址	
	1. 即时生效;			
说明	2. LinkID 需要手动指定。如果当前 LinkId 己被使用],则返回错记	吴。	
96.93	3. UDP local port 未设置或设置为 0,本地为随机端口;			
	4. UDP mode 未设置,默认为 0;			
	AT+CIPSTART=0, "UDP", "192. 168. 0. 205", 60001, 60001, 1			
示例	AT+CIPSTART=0, "UDP", "192. 168. 0. 205", 60001, 60001			
	AT+CIPSTART=0, "UDP", "192. 168. 0. 205", 60001			

5.6.3 AT+CIPCLOSE 关闭 TCP 、UDP 通信

指令		应答	
断开指定连接	AT+CIPCLOSE=[1ink ID]	+OK 成功	
断开所有	AT+CIPCLOSE	+ERR: [NUM] 错误	
参数	▶数 Link ID 连接 ID. 取值范值 0~7		
说明	 即时生效; 该指令只能断开客户端。TCP server 断开需要使用指令 AT+CIPSERVER。 断开指令发出后,模块立即响应 OK。待连接彻底断开后,模块返回+IP: "DISCONNECT " 		
示例	AT+CIPCLOSE=0		

5.6.4 AT+CIPSERVER 新建、关闭 TCP 服务

指令		应答	
査询	AT+CIPSERVER=[enable],[LocalPort]	+OK	成功
Д /н)	in on our compress, though of the	+ERR:[NUM]	错误
参数	enable	0	关闭服务

		1	创建服务
	LocalPort (开启 TCP 服务的必要参数)	TCP 服务监听端口	
	1. 即时生效;		
说明	2. 断开服务会断开所有远端 TCP Client. 与远端 TCP 连接断开后,模块返回+IP: "DISCONNECT"		
	3. 断开 TCP 服务只需要输入一个参数。例如:	AT+CIPSERVER=0	
= <i>t</i> al	AT+CIPSERVER=1, 60001		
示例	AT+CIPSERVER=0 //断开 TCP 服务,会断开原	所有的 TCP 服务进程	

5.6.5 AT+CIPSEND 发送 TCP UDP 数据

指令		应答
查询	AT+CIPSEND=[LinkID],[Length]	+OK 成功 +ERR: [NUM] 错误
⇔ ₩-	LinkID	连接 ID. 0~7
参数	Length	即将发送数据的长度
说明	 即时生效; 指令发送后,模块返回'〉',提供可以输入数据 模块仅在接到指定长度的数据后,才返回到 AT 指令模式; Len 最大长度 11520 字节; 	
示例	AT+CIPSEND=1, 10 +OK > 从串口输入"Hello Mesh."即可	

5.6.6 AT+CIPDINFO TCP 输出数据配置

指令		\(\)	应答
查询 AT+CIPDINFO=[enable]		DDINEO-[onable]	+OK 成功
旦몌	AT+CIPDINFO=[enable]		+ERR:[NUM] 错误
会₩	enable	0	禁止输出数据是携带对方地址
参数		1 (默认)	使能输出数据是携带对方地址
24 00	1. 即时生效,掉电保存;		
说明	2. 该指令影响所有输出的数据格式		
示例	AT+CIPDINFO=1		

5.6.7 +IPD 接收 TCP UDP 数据

+IPD: [Li	inkID], [Length], ["RemoteIp "], [RemotePort],	[Data]
参数	LinkID	连接 ID

25

		Length	Data 字段的长度。
		RemoteIp	远程 IP
		RemotePort	远程 Port
	1. 接收到 TCP UDP 数据后,主动上报;		
说明	2. 接收到数据,先输出该命令,随后紧跟实际数据。		女据。
	3.	若输出数据长度大于1440字节,将分包输出	0
	1. 当 AT+CIPDINFO=1 时:		
	+IPD: 1, 10, "192. 168. 0. 244", 60001		
Hello Mesh.			
	2. 当 AT+CIPDINFO=0 时		
	+IPD: 1,10		
示例	Hello Mesh.		
	3. 当 AT+CIPDINF0=1, 输出数据长度为 1540 字节:		
	+IPD: 1,1440,"192.168.0.244",60001		
	······〈有效负荷〉······		
	+IPD: 1,100,"192.168.0.244",60001		
	·······〈有效负荷〉······		

5.7 MQTT 通信

5.7.1 AT+MQTTUSERCFG MQTT 用户配置信息

设置	AT+MQTTUSERCFG=[Scheme], ["client_id"], ["use rname"], ["password"]	+OK 成功 +ERR: [NUM] 错误
查询	AT+MQTTUSERCFG?	+MQTTUSERCFG: ["client_id"], ["username"], ["password"]
	Scheme	固定为 1。MQTT TCP
参数	client_id	Mqtt 客户端 ID。最大长度: 255 字符
少蚁	username	用户名。最大长度: 63 字节
	password	密码。最大长度 63 字节
说明	1. 即时生效;	
DE 193	2. 不同的模块 client id 必须唯一。相同时 client ID 会导致模块之间的冲突。	
示例	AT+MQTTUSERCFG=1, "W07", "W07", "123456789"	

5.7.2 AT+MQTTCONNCFG MQTT 连接配置信息

设置	AT+MQTCONNCFG= [keepalive], [disable_clean_session], ["lwt_to pic"], ["lwt_msg"], [lwt_qos], [lwt_retain]	+OK +ERR: [NUM]	成功错误
查询	AT+ MQTCONNCFG?	+MQTCONNCFG=	

		[keepalive], [disable_clean_session], ["lwt_topic"], ["	
		<pre>lwt_msg"], [lwt_qos], [lwt_retain]</pre>	
	keepalive	MQTT 心跳	
	disable_clean_session	禁止清除会话。	
	lwt_topic	遗嘱主题。最大长度 64 字节	
	lwt_msg	遗嘱消息。最大长度 64 字节	
参数	lwt_qos	遗嘱消息质量。0,1,2	
	lwt_retain	如果 Will Retain 设置为 0,那么服务端必须发布 Will	
		Message, 不必保存;	
		如果 Will Retain 设置为 1,那么服务端必须发布 Will	
		Message,并保存	
说明	1. 即时生效;		
示例	AT+MQTTCONNCFG=30,0,"ABCD","kljk",2,1		

5.7.3 AT+MQTTCONN 连接 MQTT Brokers

设置	AT+MQTCONN= ["host"],	[port], [reconnect]	+OK 成功 +ERR: [NUM] 错误
查询	AT+MQTCONN?		+MQTCONNCFG= [stats], ["host"], [port], [reconnect]
	stats		0 表示 MQTT 未连接成功, 1 表示连接成功
	host		Broker 地址。最大长度 128 字节
参数	p	oort	Broker 端口
	maaannaat	0	使能重连
	reconnect	1	禁用重连
说明	1. 即时生效;		
	2. 使用 mqttclean 指令断开连接,客户端并不会重新连接。reconnect = 0 , Mqtt 因网络原因断开连接 1s 自动		
	重新连接。		
示例	AT+MQTTCONN="mqtt:// n	mqtt://mqtt.eclipse.org "	, 1883, 0\r\n

5.7.4 AT+MQTTPUB 发布 MQTT消息

设置	AT+MQTTPUB= ["topic"], ["length"], [qos], [retain]	+OK 成功 +ERR: [NUM] 错误
	topic	发布的主题。字符串长度 63 字节
参数	length	数据长度
少蚁	qos	消息质量。0,1,2
	retain	取值范围: 0, 1
说明	1. 即时生效;	
近明	2. Retain=1,在一个从客户端发送到服务端的 PUBLISH 包中,	服务端必须存储应用消息和 QoS,以便可以发送给

	之后订阅这个话题的订阅者。当一个新的订阅发生,最后一个保留的消息,如果有的话,而且匹配订阅话题,		
	必须发送给订阅者;Retain=0,服务端一定不能存储这个消息,也一定不能删除或替换任何已存在的保留消息		
	3. 模块仅在接到指定长度的数据后,才返回到 AT 指令模式;		
	4. Len 最大长度 11520 字节;		
	AT+MQTTPUB="/com/www", 10, 0, 0		
<i>t</i> al	>		
示例	Hello word.		
	+0k: 10		

5.7.5 AT+MQTTSUB 订阅主题

设置	AT+MQTTSUB= ["topic"], [qos]	+OK 成功 +ERR: [NUM] 错误
会₩	topic	发布的主题。字符串长度 63 字节
参数	qos	消息质量。0,1,2
说明	1. 即时生效;	
示例	AT+MQTTSUB="/com/wws", 2	

5.7.6 AT+MQTTUNSUB 取消订阅主题

设置	AT+MQTTUNSUB= ["topic"]	+OK 成功 +ERR: [NUM] 错误
参数	topic	发布的主题。字符串长度 63 字节
说明	1. 即时生效;	
示例	AT+MQTTSUB="/com/wws"	

5.7.7 AT+MQTTCLEAN 关闭 MQTT 连接

执行	AT+MQTTCLEAN	+OK +ERR:[NUM]	成功 错误	
参数	无			
说明	1. 即时生效;			
DE 95	2. 主动断开 Mqtt 连接。主动断开连接,mqtt 不会重连。			
示例	AT+MQTTCLEAN			

5.7.8 +MQTTSUBRECV MQTT 接收数据

+MQTTSUBRECV: ["topic"], [data_length]			
参数	topic	接收数据的主题	
	data_length	数据长度	
	1. 模块接收到 MQTT 数据后,主动上报;		
说明	2. 模块接收到数据后,选输出该命令,随后紧跟实际数据;		
	3. 若数据长度大于 1440 字节,将分包输出		
	1. 数据长度小于 1440 字节:		
	+MQTTSUBRECV: "/com/wws", 10		
	Hello Mesh.		
示例	2. 数据长度为 1540 字节		
נטינג	+MQTTSUBRECV: "/com/wws", 1440		
	······〈有效负荷〉······		
	+MQTTSUBRECV: "/com/wws", 100		
	······〈有效负荷〉······		

第六章 快速使用指南

6.1 模块上电

模块上电自动输出以下信息。该部分信息串口参数: 115200, 8, 0, 1。:

ESP-ROM: esp32s2-rc4-20191025

Build:Oct 25 2019

rst:0x1 (POWERON), boot:0x8 (SPI_FAST_FLASH_BOOT)

SPIWP: Oxee

mode:DIO, clock div:1

load:0x3ffe6100, len:0x8

load:0x3ffe6108, len:0x530

load:0x4004c000,len:0x80c

load:0x40050000, len:0x260c

entry 0x4004c178

上电信息,固定串口参数,该部信息的串口参数不受用户配置的影响。

6.2 模块准备完成

模块准备完成后输出以下信息:

ready\r\n

自该条件信息后(包含信息),模块使用用户配置的串口参数通信。模块默认的串口参数为: 115200,8,0,1

6.3 MESH 组网

6.3.1 有路由, 手动组网

STEP 1. 配置路由器信息 (无默认信息):

AT+ROUTER="Test07", "12345678", 0\r\n

 $+0K\r\n$

注意: 若是无路由组网,则不需要配置以上命令。

STEP 2. 配置 MESH ID (默认 id "00:00:00:00:00:01"):

AT+MEID="77:77:77:77:77"\r\n

 $+OK\r\n$

STEP 3. 配置 MESH AP 密码 (默认: 12345678):

 $AT+MEAP="MAP_PASSWD"\r\n$

 $+OK\r\n$

STEP 4. 配置信道 (默认信道: 1; 可切换)

 $AT+MECHANNEL=1, 0\r\n$

 $+OK\r\n$

注意:以上参数 Root 节点与普通节点必须保持一致,否则不能成功组网。

STEP 5. 配置节点类型 (默认: 0(无指定类型)):

 $AT+METYPE=1\r\n$

//从机应该发 AT+METYPE=2\r\n

 $+OK\r\n$

STEP 6. 启动组网

AT+MESTART\r\n

//从机也需发送此命令

 $+OK\r\n$

Mesh 启动组网, Root 负责创建网络,等待子节点加入;普通节点查找可用 Mesh 网络,加入 mesh 网组。组网过程以下:

ROOT 节点		普通节点	
	+ME: "PARENT CONNECT", "b8:f8:83:3b:72:e0"		
	+ME:"IP", "192.168.0.172"		
	+ME:"CHILD CONNECT","7c:df:a1:05:8c:76"	+ME:"PARENT CONNECT","7c:df:a1:00:e8:39"	

自此, 节点之间就可以收发数据。

6.3.2 收发数据

STEP 1. ROOT 节点向子节点发送数据(hello mesh.):

 $AT+MESEND="7c:df:a1:05:8c:76", 11\r\n$ //这里的 11 表示发送字节数 $+OK\r\n$

STEP 2. 待模块返回">"后,即可以发送数据

Hello mesh.

 $+OK:11\r\n$

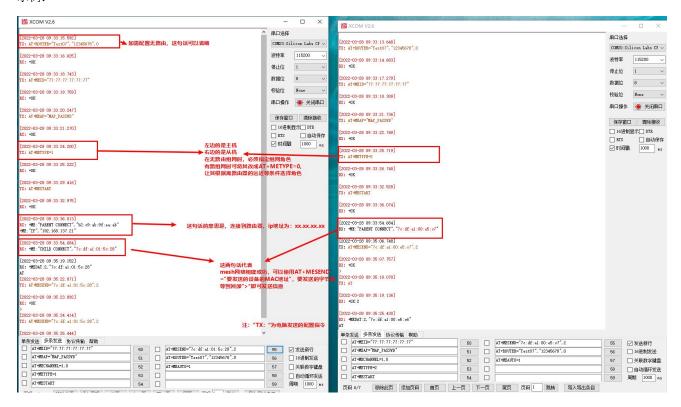
STEP 3. 子节点接收到数据后主动上报:

+MEDAT:11, "7c:df:a1:00:e8:38", hello mesh.

STEP 4. 子节点向根节点 (root 节点) 发送数 (hello mesh.)

 $AT+MESEND="7c:df:a1:00:e8:38",11\r\n$

STEP 5. 待模块返回">"后,即可以发送数据


Hello mesh. $+OK:11\r\n$

STEP 6. 根节点接收到数据后主动上报

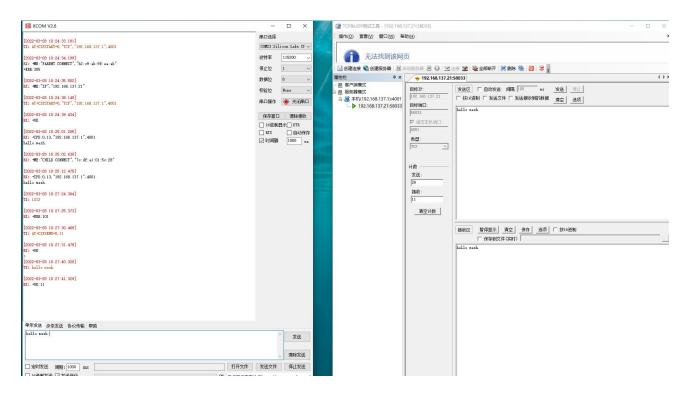
+MEDAT:11, "7c:df:a1:05:8c:76", hello mesh.

示例:

6.4 Socket 通信

仅 Root 节点能够进行 socket 通信。如果是无路由组网,Root 节点也不使用 socket 通信。Socket 仅用于根节点向外网间的通信。如果子节点需要与外网通信,需要由 Root 节点进行转发。

6.4.1 TCP Client


STEP 1. PC 端创建 TCP Server, 监听端口为 6001, PC 本地 IP: 192.168.0.205;

STEP 2. ROOT 节点创建 TCP Client:

AT+CIPSTART=0, "TCP", "192. 168. 0. 205", 6001\r\n +0K\r\n

创建完成后即可完成通信.

6.4.2 TCP Server

STEP 1. 创建 TCP Server. 监听端口: 60000

AT+CIPSERVER=1,60000\r\n

 $+0K\r\n$

STEP 2. ROOT 节点服务创建完后, PC 端创客户端,连接到 Root 节点, ROOT 节点 TCP Server 有新的 Client 连接后, ROOT 节点主动上报:

+IP: "CONNECT", 1, "192. 168. 0. 205", 59924

ROOT 节点输出该信息表示远程客户端己经成功连接到 Server. 自此即可进行通信。

6.4.3 Socket 通信

STEP 1. 向链路 0 (上面所创建的 TCP cline) 发送数据 (hello mesh.)

AT+CIPSEND=0, $10\r\n$

STEP 2. 等待模块返回 ">" 后,即发送数据 (hello mesh.)

hello mesh.

 $+OK:11\r\n$

STEP 3. PC 端接收到数据:

hello mesh.

STEP 4. PC 端向模块发送数据 (hello mesh.)

hello mesh.

STEP 5. 模块接收到数据后主动上报:

+IPD:0,11,"192.168.0.205",6001

hello mesh.

6.5 Mqtt 通信

6.5.1 配置,连接

STEP 1. 配置 MQTT 用户参数:

AT+MQTTUSERCFG=1, "W07", "W07", "123456789"\r\n

 $+OK\r\n$

STEP 2. 配置 MQTT 连接参数:

AT+MQTTCONNCFG=30, 0, "1wt", "wo7", 1, 1\r\n

 $+OK\r\n$

STEP 3. 连接 MQTT Broker

 $AT + MQTTCONN = "mqtt. eclipse projects. io", 1883, 0 \\ \ r \\ \ n$

 $+OK\r\n$

STEP 4. 等待 Mqtt 连接成功, Mqtt 连接成功后主动输动:

+MQTT: CONNECT

自此 ROOT 己经连接上 mqtt broker. 下面将使用模块订阅主题,发布消息。

6.5.2 订阅主题

订阅主题: /com/wws, 消息质量为2;

AT+MQTTSUB="/com/wws", 2\r\n

 $+OK\r\n$

成功订阅主题后,就能够接收到来自该主题的消息。

+MQTTSUBRECV: "/com/wws", 10

hello mqtt

6.5.3 发布消息

向主题 "/com/www"" 发布消息 (hello mqtt)

AT+MQTTPUB="/com/www", 10, 0, 0\r\n

 $+OK\r\n$

等待模块返回">"后,发送"hello mqtt":

Hello mqtt

 $+0K: 10\r\n$

远端接收到数据

Hello mqtt

第七章 常见问题

7.1 传输距离不理想

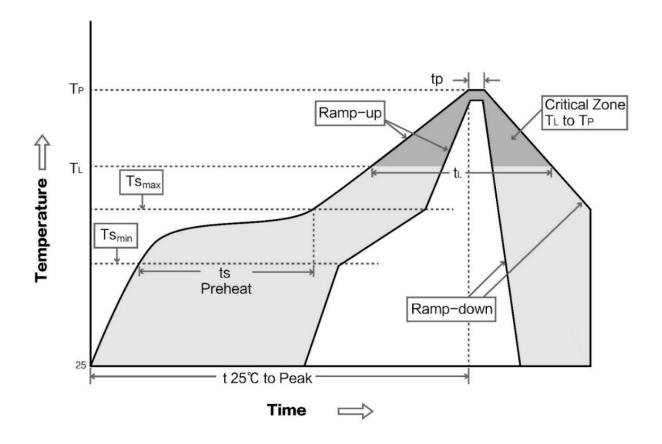
- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力, 故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;

7.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

7.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- UART 上时钟波形不标准,检查 UART 线上是否有干扰;
- 电源不理想也可能造成乱码,务必保证电源的可靠性;



第八章 焊接作业指导

8.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度	183℃	217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235°C	230-250℃
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6℃/second max	6℃/second max
Time $25^{\circ}\!$	25℃到峰值温度的时间	6 minutes max	8 minutes max

8.2 回流焊曲线图

第九章 免责声明

- 本手册尽可能在现有资料的基础上做全面详实介绍,本公司对手册内容保留修改的权力,不再另行通知
- 本手册仅作为使用指导,手册中所有信息内容不构成任何明示或暗示的担保

修订历史

版本	修订日期	修订说明	维护人
1.0	2021-03-18	初始版本	-
1. 1	2022-03-28	添加了 MESH 组网的文字说明和贴图。	-
		优化了文档中的细节,使得整个文档看起来更加优雅。	
		随着代码部分的改动,更改了 AT+MESTAUS 的显示格式。	
1. 2	2023-6-30	内容更正	Нао

关于我们

销售热线: 4000-330-990 公司电话: 028-61399028 技术支持: <u>support@cdebyte.com</u> 官方网站: www.ebyte.com

公司地址:四川省成都市高新西区西区大道 199 号 B2 栋、B5 栋

