

E22-400M30S 产品规格书

SX1268 433/470MHz 1W SPI 贴片型 LoRa 模块

成都亿佰特电子科技有限公司

目录

免责申明和版权公告	2
第一章 概述	3
1.1 简介	3
1.2 特点功能	3
1.3 应用场景	3
第二章 规格参数	Δ
2.1 极限参数	Δ
2.2 工作参数	Δ
第三章 机械尺寸与引脚定义	5
第四章 基本操作	6
4.1 硬件设计	6
4.2 软件编写	6
第五章 基本应用	7
5.1 基本电路	7
第六章 常见问题	8
6.1 传输距离不理想	8
6.2 模块易损坏	8
6.3 误码率太高	8
第七章 焊接作业指导	g
7.1 回流焊温度	9
7.2 回流焊曲线图	9
第八章 相关型号	10
第九章 天线指南	10
9.1 天线推荐	10
第十章 批量包装方式	11
修订历史	11
关于我们	12

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。 文档"按现状"提 供,不负任何担保责任,包括对适销性、适用于特定用途或非侵 权性的任何担保,和任何提 案、规格或样品在他处提到的任何担保。本文档不负任何责 任,包括使用本文档内信息产生 的侵犯任何专利权行为的责任。本文档在此未以禁止反 言或其他方式授予任何知识产权使用 许可,不管是明示许可还是暗示许可。

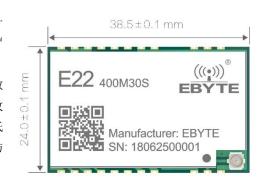
文中所得测试数据均为亿佰特实验室测试所得,实际结果可能略有差异。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

最终解释权归成都亿佰特电子科技有限公司所有。

注意:

由于产品版本升级或其他原因,本手册内容有可能变更。亿佰特电子科技有限公司保留在没有任何通知或者提示的情况 下对本手册的内容进行修改的权利。本手册仅作为使用指导,成都亿佰特电子科技有限公司尽全力在本手册中提供准确的信 息,但是成都亿佰特电子科技有限公司并不确保手册内容完全没有错误,本手册中的所有陈述、信息和建议也不构成任何明 示或暗示的担保。



第一章 概述

1.1 简介

E22-400M30S 是基于美国 Semtech 生产的全新一代 LoRa™射频芯片 SX1268 为核心自主研发的最大功率为 1W 并适用于 433/470MHz 贴片式 LoRa™ 无线模块, 使用工业级高精度 32MHz 晶振。

由于采用原装进口的 SX1268 为模块核心,在原有基础上内置了功率放 大器(PA)与低噪声放大器(LNA),使得最大发射功率达到1W的同时接收 灵敏度也获得进一步的提升,在整体的通信稳定性上较没有功率放大器与低 噪声放大器的产品大幅度提升。与上一代 LoRa™收发器相比, 抗干扰性能与 通信距离得到了提升,进一步拉开了与 FSK、GFSK 调制方式的产品的差距。 该产品已获得 FCC、CE、RoHS 等国际权威认证报告,用户无需担忧其性能。 该产品可覆盖 410~493MHz 超宽适用频率范围并向下兼容 SX1278、SX1276。

由于该模块是纯射频收发模块,需要使用 MCU 驱动或使用专用的 SPI 调试工具。

1.2 特点功能

- 与 SX1278 模块相比, SX1268 模块具有功耗更低、速度更快、距离更远的显著优势;
- 理想条件下,通信距离可达 12km:
- 内置 PA+LNA, 大幅度提升通信距离和通信稳定性;
- 最大发射功率 1W, 软件多级可调;
- 支持全球免许可 ISM 433/470MHz 频段;
- LoRa[™]模式下支持 0.018k~62.5kbps 的数据传输速率;
- FSK 模式下支持最高 300kpbs 的数据传输速率:
- 向下兼容 SX1278/SX1276 系列射频收发器;
- FIFO 容量大,支持 256Byte 数据缓存;
- 为支持密集网络推出的全新 SF5 扩频因子;
- 支持 3.3~5.5V 供电, 大于 5V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用:
- 双天线可选(IPEX/邮票孔),便于用户二次开发,利于集成;

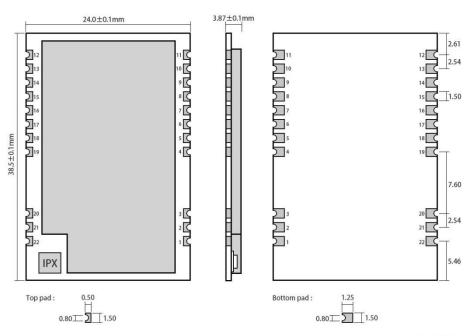
1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案;
- 无线工业级遥控器;
- 高级抄表架构(AMI);
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

主要参数	性	能	备注	
土安少奴	最小值	最大值	任 仁	
电源电压 (V)	0	5. 5	超过 5.5V 永久烧毁模块	
阻塞功率(dBm)	_	10	近距离使用烧毁概率较小	
工作温度(℃)	-40	+85	工业级	


2.2 工作参数

	主要参数		性能		备注
	工女少奴	最小值	典型值	最大值	·
	工作电压 (V)	3.3	5.0	5. 5	≥5.0V 可保证输出功率
	通信电平(V)		3.3		使用 5V TTL 建议加电平转换
	工作温度(℃)	-40	_	+85	工业级设计
	工作频段 (MHz)	410	433/470	493	支持 ISM 频段
功	发射电流 (mA)		650		瞬时功耗
邦	接收电流(mA)		14		
↑□	休眠电流(uA)		2		软件关断
	最大发射功率 (dBm)	29. 5	30.0	31	
	接收灵敏度(dBm)	-149	-150	-151	空中速率为 0. 3kbps
	商中生 菜(1)		_	300k	用户编程控制
	空中速率(bps)	0.018k	_	62. 5k	用户编程控制

主要参数	描述	备注
参考距离	10km	晴朗空旷,天线增益 5dBi, 天线高度 2.5米,空中速率 0.3kbps
FIF0	256Byte	单次发送最大长度
晶振频率	32MHz	有源晶振
调制方式	LoRa(推荐)	-
封装方式	贴片式	-
接口方式	2.54mm	邮票孔
通信接口	SPI	0~10Mbps
外形尺寸	38. 5*24mm	-
天线接口	邮票孔/IPEX	等效阻抗约 50 Ω

成都亿佰特电子科技有限公司

第三章 机械尺寸与引脚定义

Pad quantity: 22 Unit: mm

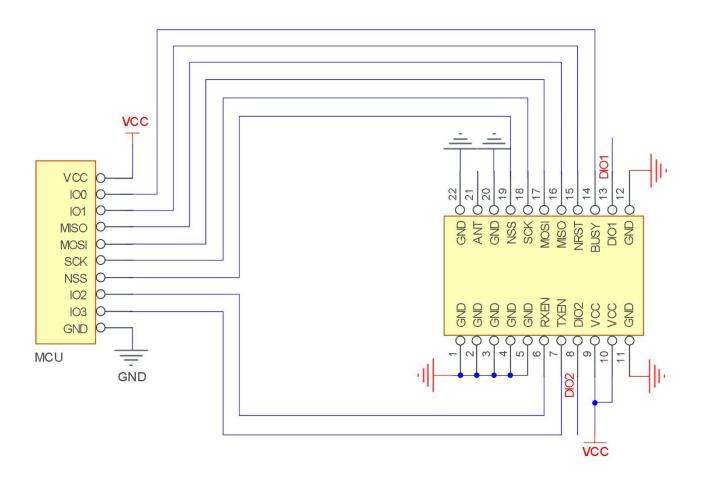
引脚序号	引脚名称	引脚方向	引脚用途
1	GND	_	地线,连接到电源参考地
2	GND	_	地线,连接到电源参考地
3	GND	-	地线,连接到电源参考地
4	GND	-	地线,连接到电源参考地
5	GND	-	地线,连接到电源参考地
6	RXEN	输入	射频开关接收控制脚,连接外部单片机 I0,高电平有效
7	TXEN	输入	射频开关发射控制脚,连接外部单片机 I0 或 DI02,高电平有效
8	DIO2	输入/输出	可配置的通用 IO 口(详见 SX1268 手册)
9	VCC	-	供电电源,范围 3.3~5.5V (建议外部增加陶瓷滤波电容)
10	VCC	-	供电电源,范围 3.3~5.5V(建议外部增加陶瓷滤波电容)
11	GND	_	地线,连接到电源参考地
12	GND	-	地线,连接到电源参考地
13	DIO1	输入/输出	可配置的通用 IO 口(详见 SX1268 手册)
14	BUSY	输出	用于状态指示(详见 SX1268 手册)
15	NRST	输入	芯片复位触发输入脚,低电平有效
16	MISO	输出	SPI 数据输出引脚
17	MOSI	输入	SPI 数据输入引脚
18	SCK	输入	SPI 时钟输入引脚
19	NSS	输入	模块片选引脚,用于开始一个 SPI 通信
20	GND	_	地线,连接到电源参考地
21	ANT	_	天线接口,邮票孔(50Ω特性阻抗)

22	GND	_	地线,连接到电源参考地

第四章 基本操作

硬件设计 4. 1

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer, 在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的, 会在不同程度影响模块的杂散以 及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可 以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强 度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平, 必须串联 1k-5.1k 电阻(不推荐, 仍有损坏风险);
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议,例如: USB3.0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露,最好垂直向上。当模块安装于机壳内部时,可使用优质的天 线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。
- 建议在外部 MCU 的 RXD/TXD 增加 200R 的保护电阻。


软件编写 4. 2

- 此模块为 SX1268/SX1262+PA+LNA, 其驱动方式完全等同于 SX1268/SX1262, 用户可以完全按照 SX1268/SX1262 芯片册进 行操作;
- DIO1、DIO2 是一般通用 IO 口,可以配置成多种功能;其中 DIO2 可以与 TXEN 连接,不与 MCU 的 IO 口连接,用于控制 射频开关发射,详见 SX1262 手册,若不使用可以悬空;
- 内部使用 DIO3 为 32MHz TCXO 晶振供电 (DIO3 配置输出 2.2V)。

第五章 基本应用

5.1 基本电路

第六章 常见问题

6.1 传输距离不理想

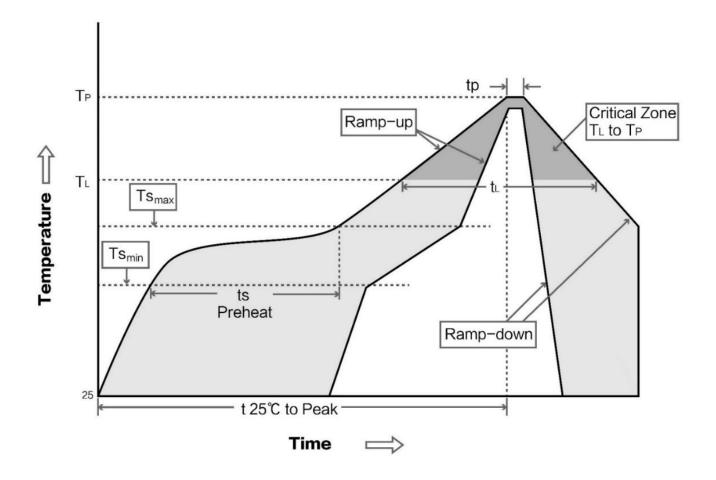
- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力, 故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值, 电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

6.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

6.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- SPI 上时钟波形不标准, 检查 SPI 线上是否有干扰, SPI 总线走线不宜过长;
- 电源不理想也可能造成乱码, 务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高。



第七章 焊接作业指导

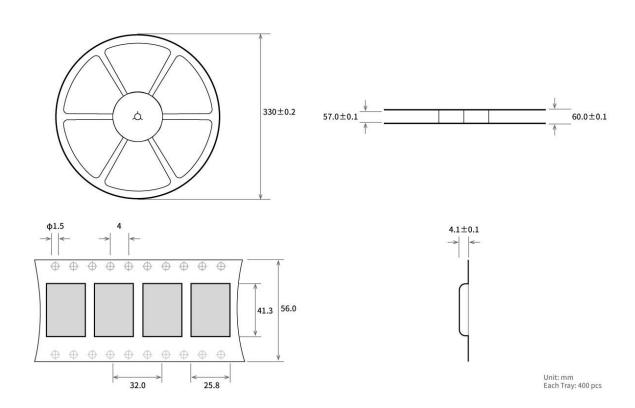
7.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度	183℃	217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235℃	230-250℃
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6℃/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

7.2 回流焊曲线图

第八章 相关型号

产品型号	芯片方案	载波频率	发射功率	测试距离	封装形式	产品尺寸	通信接口
		Hz	dBm	km		mm	
E22-400M22S	SX1268	433/470M	22	5. 5	贴片	14*20	SPI
E22-900M22S	SX1262	868/915M	22	5. 5	贴片	14*20	SPI
E22-400M30S	SX1268	433/470M	30	10	贴片	24*38.5	SPI
E22-900M30S	SX1262	868/915M	30	10	贴片	24*38.5	SPI
E22-230T22S	SX1262	230M	22	5. 5	贴片	16*26	TTL
E22-400T22S	SX1268	433/470M	22	5. 5	贴片	16*26	TTL
E22-900T22S	SX1262	868/915M	22	5. 5	贴片	16*26	TTL
E22-230T30S	SX1262	230M	30	10	贴片	25*40.5	TTL
E22-400T30S	SX1268	433/470M	30	10	贴片	25*40.5	TTL
E22-900T30S	SX1262	868/915M	30	10	贴片	25*40.5	TTL


第九章 天线指南

9.1 天线推荐

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套我司无线模 块且性能较为优秀且价格合理的天线。

产品型号	类型	频段	接口	增益	高度	馈线	功能特点
)加坐与	大 垒	Hz	1女口	dBi	mm	cm	为此有点
TX433-NP-4310	柔性天线	433M	焊接	2.0	43. 8*9. 5	_	内置柔性, FPC 软天线
<u>TX433-JZ-5</u>	胶棒天线	433M	SMA-J	2.0	52	-	超短直式,全向天线
<u>TX433-JZG-6</u>	胶棒天线	433M	SMA-J	2.5	62	-	超短直式,全向天线
<u>TX433-JW-5</u>	胶棒天线	433M	SMA-J	2.0	50	-	弯折胶棒,全向天线
<u>TX433-JWG-7</u>	胶棒天线	433M	SMA-J	2.5	75	-	弯折胶棒,全向天线
TX433-JK-11	胶棒天线	433M	SMA-J	2.5	110	-	可弯折胶棒,全向天线
TX433-JK-20	胶棒天线	433M	SMA-J	3.0	210	-	可弯折胶棒,全向天线
TX433-XPL-100	吸盘天线	433M	SMA-J	3.5	185	100	小型吸盘天线, 性价比
TX433-XP-200	吸盘天线	433M	SMA-J	4.0	190	200	中性吸盘天线,低损耗
TX433-XPH-300	吸盘天线	433M	SMA-J	6.0	965	300	大型吸盘天线,高增益
TX490-JZ-5	胶棒天线	470/490M	SMA-J	2.0	50	_	超短直式,全向天线
TX490-XPL-100	吸盘天线	470/490M	SMA-J	3.5	120	100	小型吸盘天线, 性价比

第十章 批量包装方式

修订历史

版本	修订日期	修订说明	维护人
1.0	2018-9-18	手册发布	huaa
1.1	2019-2-17	错误修正	Ray
1.2	2019-3-22	内容更新	Ray
1.3	2019-9-24	内容更新	Ren
1.4	2020-04-14	错误修正	Ren
1.5	2020-11-26	错误修正	Linson

关于我们

销售热线: 4000-330-990 公司电话: 028-61399028 技术支持: <u>support@cdebyte.com</u> 官方网站: <u>www.ebyte.com</u>

公司地址: 四川省成都市高新西区西区大道 199 号 B5 栋

